III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

DIGITAL SIGNAL PROCESSING (ELECTRONICS & COMMUNCIATION ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
					IVIAI KS			
	UNIT-I							
1	a)	Compute the Linear convolution of the	L3	CO2	7 M			
		given sequences						
		$x[n] = \{1, 2, 4\}$						
		$h[n] = \{1, 1, 1, 2\}$						
	b)	Determine the response of the relaxed	L3	CO1	7 M			
		system characterized by the impulse		CO2				
		response $h[n] = (0.5)^n u[n]$ and input						
		$\mathbf{x}[\mathbf{n}] = (2)^{\mathbf{n}} \mathbf{u}[\mathbf{n}].$						
OR								
2	Che	eck whether the given LTI systems are causal	L3	CO2	14 M			
	and stable							
	a	a) $h[n] = (0.5)^n u(n)$						
	b	b) $h[n] = \delta(n) + \delta(n-1)$						
	c) $h[n] = (2)^n u(-n)$						

Max. Marks: 70

		UNIT-II			
3	a)	State and Prove convolution and conjugate	L3	CO1	7 M
		symmetry properties of DFT.			
	b)	Find the DFT of $x(n) = \{1, 2, 2, 1\}$ and	L3	CO1	7 M
		sketch the magnitude and phase spectra.			
		OR			
4	a)	Develop 8-point radix-2 Decimation-in-	L3	CO5	7 M
		Frequency FFT flow graph for $N = 8$.			
	b)	Obtain the 8 point DIT FFT of given	L3	CO5	7 M
		sequence $x(n) = \{8, 8, 8, 0, 1, 4, 2, 3\}$			
		UNIT-III	ſ	1 1	
5	Des	sign a Butterworth filter using Bilinear	L5	CO2	14 M
	Tra	nsformation method for the following		CO4	
	spe	cifications:			
		$0.8 \le \left H(e^{j\omega}) \right \le 1 \qquad 0 \le \omega \le 0.2\pi$			
		$\left H(e^{j\omega}) \right \le 0.2 \qquad 0.6\pi \le \omega \le \pi$			
		OR			
6	a)	Illustrate the Impulse Invariant	L3	CO2	7 M
		transformation method of obtaining digital			
		filter from analog filter.			
	b)	Apply bilinear transformation to (<i>s</i>)	L3	CO2	7 M
		$=\frac{2}{(s+1)(s+2)}$ with T=1sec and compute H(z).		CO4	
		UNIT-IV			
7	a)	Compare IIR and FIR digital filters.	L3	CO2	4 M
	b)	Design a Low Pass FIR filter of length 9	L5	CO2	10 M

		with a cutoff frequency of 2 rad/sec using		CO4	
		Hamming window.			
		OR			
8	a)	Find the direct form - I and direct form – II	L3	CO3	7 M
		realizations of a discrete time system			
		represented by			
		$H(Z) = \frac{2Z^3 - 4Z^2 + 11Z - 8}{(Z - 8)(Z^2 - Z + 3)}$			
	b)	Explain the characteristics of rectangular	L2	CO2	7 M
	,	window with typical sketches.			
9	a)	_ · · ·	L3	CO1	10 M
9	a)	UNIT-V Discuss the procedure to implement digital	L3	CO1	10 M
		filter bank using multirate signal processing.		CO5	
	b)	State the applications of multirate signal processing.	L2	CO5	4 M
		OR		11	
10	a)	Derive the expression for the spectrum of a	L3	CO1	7 M
		down sampled signal.		CO5	
	b)	Explain the concept of interpolation by a	L3	CO1	7 M
		factor I with the help of necessary		CO5	
		equations.			